
REPLICATION,
THE NEXT GENERATION OF

DISTRIBUTED DATABASE TECHNOLOGY

by George Schussel
Digital Consulting, Inc.

204 Andover St.
Andover MA, USA 01 81 0

Tel5081470-3870
Fax 5081470-2002

Corn puServe 74407,2472

June 15,1994

November 1. 1994

REPLICATION. THE NEXT GENERATION OF DISTRIBUTED DATABASE
TECHNOLOGY

About the Author ... 2
Introduction .. 3

Two Different Approaches: Warehousing versus Replication for
Transactions ... 3
Distributed DBMS ... 6
TP-R as Compared with Distributed DBMS .. 7

... The Crucial Role of a 2 Phase Commit 8
Definition .. .- 8

... Replication and 2-Phase Commit 11
Introduction to DSS-R Approaches and Table Copying 12

.. DSS-R Schema 14
... Cascading Replicates 14

. .. Optimization Push & Pull 15
TP-R Replication: Peer to Peer & MasterlSlave Approaches 15

Collisions with a Peer to Peer Architecture .. 17
TP-R and Fault Tolerance .. 18
Transparency & Richness of Function ... 18
The TP-R Schema .. 19
Replication Timing .. 20

.. Database Configuration & d.b.a. Utilities 21
Replication into Heterogeneous DBMS ... 22
Summary of Replication Benefits .. 23

Better Response Time from Local Data ... 23
Replication for Hot Standby Backup ... 23
Data Availability Such as Separate Servers for Separate Functions 24
Splitting the Workload for Capacity Relief .. 25
Non-Stop Processing & System Fault Tolerance 26

Conclusion ... 27
It's a Complex Environment .. 27
Your Database Administrator is a Key Resource 27
Your Approach Should be Cost and Benefit Based 27
Keep it Simple, Especially at First .. 27

About the Author
Dr . George Schussel. DCl's founder. is Chairman of Database & ClienUServer

World and a world-renowned authority on information systems and clientlserver
technology . He is a lecturer. writer and consultant to the computer industry and major
user companies on data processing issues .

Replication, or the copying of data in databases to multiple locations to support
distributed applications, is an important new tool for businesses in building
competitive service advantages. New replicator facilities from several vendors are
making this technology much more useful and practical than it's been in the past. In
this article we will go into enough detail on replication for the reader to understand
the importance of replication, its benefits and some of the related technical issues.

Buying trends today clearly indicate that companies want their applications to be
open and distributed closer to the line of business. This means that databases
supporting those companies have to migrate to this same open, distributed world.
As distributed operational applications become more widely used across large
enterprises there is going to be a requirement for increasing numbers of data copies
to support timely local response. This is because the propagation uncertainties and
costs associated with real time networks and/or distributed DBMS solutions are a
headache to deal with.

Replication provides users with their own local copies of data. These local,
updatable data copies can support increased localized processing, reduced network
traffic, easy scalability and cheaper approaches for distributed, non-stop
processing.

While replication or data copying can clearly provide users with local and therefore
much quicker access to data, the challenge is to provide these copies to users so
that the overall systems operate with the same integrity and management capacity
that is available with a monolithic, central model. For example, if the same inventory
records exist on two different systems in two different locations, say New York and
Chicago, the system needs to insure that the same product isn't sold to two
separate customers.

Replication is the best current solution for many applications because it can be
cheaper and more reliable than the alternative of a distributed DBMS engine. A
distributed DBMS uses a 2-phase commit to couple together all updates to all
locations participating in an update. This becomes difficult as the number of
participating nodes increases. With 50 or more nodes a tightly coupled 2-phase
commit process for updating is probably impractical. A replication approach
uncouples the applications from the underlying multiple data copies and allows the
applications to proceed while behind the scene the replication server handles the
coordination of multiple updates. The difference in approaches between replication
and distributed DBMS approaches will be discussed in detail below.

Two Different Approaches: Warehousing versus Replication for Transactions
There are many different approaches to replication, each well suited to solving
certain classes of problems. The different types of technologies, in fact, span a

3

scale of approaches as is illustrated as in Figure 1. On the right side are classes of
technologies that are appropriate for supporting operational systems whose
principal role is allowing real time transaction processing in widely distributed
locations. On the left side of this scale are approaches that are well suited for
supporting decision making, browsing and research on LAN based PC's or other
platforms.

THE COPY CONTINUUM

DOWNSIZING UPSIZING

HIGH VALUE HIGH
ADDED) CURRENCY

*Thanks to Holly Rader of IBM, Santa Teresa for this idea

1

Figure I - Different approaches to copying for different purposes

4

The type of replication strategy that is appropriate is very problem or application
dependent. Decision support applications are often well supported by technologies
that employ table copying or snapshot technologies. These technologies (the term
"warehouse" is often applied here) can support multiple schema's or data views and
are normally set up so that the copies are "read only". For simplicity in this paper,
these approaches will be referred to as warehouse or (DSS-R, Decision Support
Systems - Replication).

Warehousing applications are usually characterized by a need for data copies that
are consistent for a single point in time; that point doesn't necessarily have to be the
current time and sometimes it's preferable that it's not. In period accounting or trend
analysis, for example, a stable data source is essential. In decision support systems
(DSS) one usually needs history for a series of data values. Multidimensional or
matrix representation of the data with one of the axes being time is frequently used.

READ ONLY
POINT IN

TIME

FULLY
CHECK OUT, SYNCHRONIZED

CHECK IN UPDATABLE
COPIES -

READ ONLY ASYNCHRONOUS DDBMS
NEAR REAL UPDATABLE

TIME COPIES

The data, when it's presented to the user, cannot be encoded but has to be in a
form that is comfortable and familiar to users. GUI forms of presentation are
becoming a requirement for warehouse applications. In order to make the data most
useful to the end user, it frequently requires the system to perform derivation,
aggregation and transformation functions to the raw data.

Database copies that support warehouse applications are usually read only.
Updates, as they occur, are performed to the source production system database
from which the target warehouse database copy was created. It is possible,
however, to have an environment where updates can be processed against both
production and warehouse databases. This is done by keeping the two in a
synchronous state with a 2-phase commit update against both source and target
data. Normally this is not a good idea because of specialized tuning for the read
only copy that allows it to perform better in decision support. Transaction
processing updates will likely interfere with its job efficiency.

IBM is probably the leader in offering technology to support data warehousing.
DEC, Hewlett Packard and Information Builders are other companies that offer
important technology for supporting data warehouse approaches.

At the other end of the replication technology continuum are replication approaches
that are designed to replace and improve on 'distributed on-line or distributed DBMS
technologies. These approaches have to offer real time updating against copies of
data that may be located in many locations. The basic approach used by replication
servers here is to uncouple the distribution of data copies from the originating
application. The application is allowed to update its local copy and when that is
completed it proceeds to the next transaction. Asynchronously, the replication
server, then propagates the changed data to its other locations. This type of
replication is appropriate for a production system. It normally requires a single
global schema. These systems will be referred to as (TP-R, Transaction Processing
- Replication).

TP-R requires a very different technology than warehousing. Production systems
need the current state of data, not its history. For efficiency purposes, at input and
in processing, the data is frequently encoded. Each production location does not
necessarily need access to all of the global data. Subsetting by region, for example,
is common. Any node must allow updates to production data. The propagation of
update copies to secondary locations should be done as soon as possible. That
propagation, then, is done in near real time with a separate 2-phase commit to each
target copy location. Such a system can maintain transaction consistency for
updates that span multiple tables at one (or more) target sites.

The leaders in TP-R approaches are Sybase and the ASK Group (INGRES
Division). Sybase's architecture is built around a master/slave concept. INGRES is
based on a peer to peer model. Both of these approaches will be discussed below.

Between the two extremes of DSS-R and TP-R there are many possibilities of
combining features and functions for a customized distributed solution. When
considering replication options the user needs to consider requirements for
currency, local updates, data enhancement and history maintenance, among other
considerations. In the interest of keeping this article of readable length we will
concentrate on replication and distributed DBMS issues from the two ends of the
continuum scale shown in Figure 1.

Distributed DBMS
It's useful to understand something about distributed DBMS technologies before
analyzing replication, because the approaches are very closely related. The
concepts behind distributed DBMS were pioneered during the late 1970's in the IBM
research project R*Star. IBM's subsequent delivery of distributed DBMS products
has been part of a 10 year evolving technology known as DRDA (distributed
relational data architecture). DRDA at this time is largely an approach for integrating
data sets across the different versions of DB2 that run on AIX, OS/2, OS/400, VM
and MVS. DRDA has been published and IBM encourages other DBMS vendors to
participate as client or server sites.

The first well-publicized distributed DBMS product was INGRES/Star, announced in
1987. Oracle also announced distributed DBMS capabilities in 1987, but largely as
a marketing ploy. The first Oracle product to reasonably support distributed
database processing is Oracle 7, which has been in the market since 1993.

A true distributed DBMS, as defined by most industry consultants, requires the
system to support updates at any node on the network. A short summary of Chris
Date's requirements for the functions that should be supported by a distributed
DBMS is provided in Figure 2.

REOUIREMENTS FOR A DISTRIBUTED DBMS

I. LOCAL AUTONOMY; LOCAL DATA ARE MANAGED INDEPENDENTLY OF
OTHER SITES

2. LOCATION INDEPENDENCE: USERS AND PROGRAMS DON'T NEED TO
KNOW THE LOCATION OR PATH TO THE DATA

3. NO CENTRAL SITE: NO DBMS SITE IS MORE IMPORTANT THAN
ANOTHER

4. CONTINUOUS OPERATION: NO PLANNED ACTIVITY SHOULD REQUIRE A
SHUT DOWN

5. FRAGMENTATION INDEPENDENCE: A TABLE THAT HAS BEEN
FRAGMENTED WILL APPEAR AS A SINGLE TABLE TO USERS

6. REPLICATION INDEPENDENCE: REDUNDANT DATA IS MANAGED,
ACCESSED & UPDATED TRANSPARENTLY. FAILOVER RECONSTRUCTION

7. DISTRIBUTED QUERY OPTIMIZATION & PERFORMANCE INDEPENDENCE
8. DISTRIBUTED TRANSACTION MANAGEMENT: INTERLEAVED

TRANSACTIONS THAT UPDATE MULTIPLE SITES RUN WITH
CONCURRENCY CONTROL AND RECOVERY CONTROL IF THERE'S A
FA1 LU RE.

9. INDEPENDENCE FROM: HARDWARE, OIS, NETWORK, DBMS
10. THERE'S DISTRIBUTED ACCESS TO THE DATA DICTIONARY

Figure 2 - Chris Date's requirements & functions of a distributed DBMS

TP-R as Compared with Distributed DBMS
If one compares TP-R to distributed DBMS, the main difference is in the relationship
of the application to the various distributed updates. With distributed DBMS there is
a single 2-phase commit that synchronously locks all of the data copies until all
locations respond with a "committed" message. With TP-R replication this is
replaced by "n" separate two phase commits, where "nu is the number of separate
data locations.

Replicated database nodes are less synchronized than data copies maintained by a
distributed DBMS, of course. Conversely, they offer faster overall system
processing, faster local commits of transactions and the potential for significantly
reduced network traffic. All of this, however, is at the risk of collisions between
different data servers.
A collision is when different physical copies are updated by different applications
during the same interval of time. A DBMS replication server needs to provide
software to aid in the resolution of such collisions. Software can detect a collision
and provide notification. It also can follow any business rules that have been set up
to resolve such an occurrence. Collision resolution is discussed later in this article.

The replication approach is more fault tolerant than distributed database and
therefore more appropriate for many applications. In a replication approach the

7

timing between the changes at the different nodes is managed through mail or store
and forward approaches rather than through locked multi-site transactions. Once
the application updates its local data, it is de coupled from the replication engine
which has the responsibility for propagating the copies of the changed data to other
locations. A transaction managed through a replication approach is considered
successful if it is committed at one site (in a peer to peer system) or at the master
site (in a master/slave approach).

Replication cannot be used where absolute data synchronization is required for the
application. Examples of such applications would be financial trading and banking
funds transfer. Other applications such as order processing, and hotel or airline
reservations might be handled with replication approaches. After all, airlines and
hotels overbook intentionally. If the application can deal with some inconsistency
among the different data nodes for short periods of time, then replication should be
considered as an alternative.

The Crucial Role of a 2 Phase Commit

Definition
The essence (and the bane) of distributed database is the 2-phase commit. What
the 2-phase commit accomplishes is a synchronized locking of all pieces of a
transaction. The result, then is an atomic action when the transaction is spread over
multiple locations and processors. A 2-phase commit allows a distributed
transaction to be processed with the same data integrity as a transaction that is
processed entirely within a single computer database.

WHY YOU NEED A TWO PHASE COMMIT

Now the source disagrees

Figure 3 - An example for the 2-phase commit

In Figure 3, an example is provided showing the need for a technology like 2-phase
commit. Things start off when application 1 updates the lower left database. It does
that by reading the before image of the data to be modified, changing it and holding
locks on the data, plus preparing a log entry in the lower left database. That
application then goes on to successfully accomplish the same process with the
center lower database. But as application 1 tries to complete its updates by
updating the database at the top right, it finds out that another application (2) has
already modified part of the data that is to be updated by application 1. In other
words the data read now doesn't agree with the values that were read in the first two
updates. This is a "collision" and the end result for a distributed DBMS is that the
first two pending updates have failed, the locks are released and the transaction is
rejected.

Figure 4 details the procedure followed by a distributed DBMS in a 2-phase commit.
When a synchronized 2-phase commit is combined with data locking, logging and
recovery, the necessary ingredients for building a distributed database with
absolute data synchronization are in place. However, because any failure in the
network or any of the local participating databases causes the entire transaction to
fail, this approach to distributed computing is very intolerant to failure.

Because of this intolerance, distributed DBMS are not typically used to create and
manage replicates. The distributed DBMS is more useful where data integrity across

multiple sites must be guaranteed. In these environments the real failure would be
to permit updating some nodes in the presence of outages of others.

2 PHASE COMMIT PROTOCOL
GOAL
1. MULTIPLE NODES

2. SYNCHRONIZED UPDATES

PROCEDURE
1. MASTER SENDS UPDATE TO SLAVES, "DO FAST COMMIT TO LOG"

2. SLAVES RESPOND WlTH "LOG COMMITTED"

3. MASTER SENDS A 'COMMIT TO DATABASE" MESSAGE

4. SLAVES RESPOND WITH 'COMMITTED" MESSAGE

NOTES
1. MANY DIFFERENT IMPLEMENTATIONS

2. COMPLEX, BUT IT'S OPERATION INVISIBLE TO USER.

3. IN ADDITION NEED RECOVERY MECHANISMS WHICH CAN BE VERY
COMPLEX, EXPECIALLY WHEN FAILURE AFTER SOME BUT NOT
ALL UPDATES HAVE OCCURRED.

4. ANY NODE THAT'S DOWN CAUSES TRANSACTION TO BE BACKED
OUT

Figure 4 - A 2-phase commit approach

All modern distributed DBMS products offer methods for implementing a 2-phase
commit. However, the degree of automation support is different from different
vendors. For example, IBM, Oracle and INGRES offer high level (transparent to the
application) approaches to implementing 2-phase commit. The Sybase replicator
takes more programming to implement in that it requires the user to handle some of
the "handshaking" issues, by, for example, coding DBLib or RPC calls into the
application. If the application environment requires transaction rollback from time to
time, this additional programming can be difficult to handle properly.

Distributed DBMS 2-phase commit procedures and implementations are proprietary
as there is no standard established for how it should work. There is an XA standard
from XlOpen which has been implemented in several transaction monitors, but it
hasn't been implemented as part of any vendor's DBMS technology. IBM and
Sybase have published their proprietary protocols and procedures for 2-phase
commit. Some other vendors, like INGRES and Digital, have taken advantage of this

information by including support for a 2-phase commit process to extend from their
own systems to those of IBM and Sybase also.

Replication and 2-Phase Commit
Replication offers an asynchronous approach to updating copies. Asynchronous as
defined above means that the distributing of the updates to secondary sites has
been uncoupled from the primary update. The process which transmits the updates
has to be reliable (insuring that the copies get to the targets) and valid (insuring that
the necessary integrity is maintained at the target). DSS-R and TP-R approaches
can use the same approach for reliability, but typically use different technologies for
validitylintegrity.

In both approaches, the process for insuring that no copy information is lost is to
use a 2-phase commit protocol for the changed data transmission.

In TP-R environments the integrity of data at the target site must be maintained by
applying copy updates one transaction at a time. The changed data from one user
transaction can span muhiple tables at each update location. At each site, then, all
or none of the updates should be applied. This way the data stays consistent across
all tables at all times.

In contrast, DSS-R approaches apply updates table by table. All tables that may
have been affected by one transaction aren't committed in the same unit of work
under DSS-R.

The DSS-R approach is usually far more efficient in computer and network
resources, especially since it allows for the net result of a series of updates to be
transmitted rather than the propagation of all the individual changes themselves.
However, this "netting out" isn't appropriate for transaction based environments.

In both replication approaches, unlike for a distributed DBMS, it is not necessary for
the 2 phase commits that distribute the copies to be part of the original (application
driven) transaction. An example of a TP-R implementation approach for this is:
1. The original (application driven) transaction performs a local DBMS transaction

with a normal commit. As part of this local transaction the distribution queues
and replication logs are updated with a record of the transaction. Once this is
complete the application can continue to process other transactions.

2. In near real time fashion the replication server will be notified by the local DBMS
that there is a transaction waiting to replicate. The server examines the
distribution queues and then schedules multiple sub-transactions to update the
target databases. These databases are, typically, remote and therefore the
replication server uses a separate 2-phase commit protocol when moving
transactions from the distribution queue to each individual target database.

3. For any target databases that are not on-line or available, distribution
transactions will remain in the distribution queue until a time when the targets
become available. The other (available) target databases can go ahead and

synchronize with the source and, of course, the originating application is not
affected by these (behind the scenes) DBMS activities.

It is interesting to consider the above scenario and how it compares to a true
distributed DBMS solution based on synchronous updating approaches. The first
key point is that the application isn't blocked by a problem that is related to
distributed transactions. It performs a local update, which is quick, while the DBMS
manages the distribution asynchronously.

The second key point, of course, is that there is a latency between the updates
performed at the primary and subsequent copies. This raises application issues
which the user needs to be able to live with. These points will be discussed below
under the topic of collisions.

A third key point is that in larger and/or less reliable environments a distributed
DBMS approach just wouldn't work, while replication's architecture can. Imagine a
situation with 100 target database nodes, only 90 of which are available. A
replication server would perform 100 separate 2 phase commit transactions, each
with two branches. A distributed DBMS would attempt to perform one 2 phase
commit transaction with 100 branches. Even if all 100 nodes were on-line, the
distributed DBMS would hold locks on all 100 targets until all 100 were willing to
commit. In an unreliable WAN scenario (e.g., developing countries) or any situation
with many nodes, clearly the distributed DBMS solution just flat doesn't work.

If you use a replication server to support operational systems, the application view
of data at the different locations should be 1) each logically consistent within self,
but 2) possibly out of phase with each other for some period of time. The differences
in data among different nodes are all transitory and get reconciled over time.

lnfroducfion fo DSS-R Atmroaches and Table Co~vinq

DSS-R approaches to replication usually are built on various technology variations
of table copying. Tables at the target location are created one at a time drawing
from one or more source tables or files. DSS-R copies are inherently read-only.
Most approaches provide for transaction consistent data within a table, but are not
concerned with transaction consistency across sets of target tables. A common
environment is for tables to be updated after the close of business, so fully
consistent environments are established by the morning.

The typical decision support application has a requirement for consistent period
data sources and not necessarily for data that is up-to-the-minute current. DSS-R
approaches, then, don't typically worry about keeping the data current (daily or less
often, is typical for updates). Consistent, stable data for a given period is the
highest requirement for these types of applications. The decision support systems
are tuned for query processing, typically by adding more indexes. In this case, then,
continuous propagation of updates would interfere with the ability of the query tool

to provide reasonable performance (above and beyond the additional load that is
created on the replication server).

The replication server should provide various timing options which can create
copies based on timed events (clock or interval), on application events (e.g. end of
day reconciliation completed), or on manual request.

Other important requirements for decision support include the ability to access
legacy production system data from sources such as IMS, RMS, VSAM and flat files
and to provide sophisticated data manipulation/enhancement to that data.

iBI!kf's COPY' MAAM GEIVEL%rTT

j R C I M Y

- UNDER APPLICATION CONTROL

RECONCILED DATA

f- - ABSTRACTS. EDITED

DERIVED DATA

-3 - SUMMARIZED, CALCULATED

I

Figure 5 - IBM's Architecture for an lnformation Warehouse

An example of data enhancement is what IBM has implemented in its lnformation
Warehouse - a sort of three schema architecture for decision support purposes.
Recognizing that operational systems frequently aren't correctly structured for
supporting queries, IBM offers reconciled copies and derived data which summarize
and add calculation value to the copies of data offered for decision support. The
copies can be updated at any time and according to criteria established by the
d.b.a.

DSS-R approaches are very useful in situations where companies are downsizing
and the distributed applications need to share data with host legacy systems. The
assumption of DSS-R is that updates will be made at the single source sites, not at
the data copy sites. Sometimes, source data is in a central host, but other times it
can be located in remote locations which own distinct data fragments. The data
copies, however, are "read-only".

The predominant technology for DSS-R replication is some form of extract,
manipulate, and further processing. These runs are typically batch jobs that occur
after on-line transaction processing has ceased. It is much simpler to insure
consistent transaction data is copied when the source table(s) are not being
updated.

Alternatively, DSS-R may be provided through propagation of source table changes
to the target. In large database environments (multiple 100s of gigabytes) where full
refresh table copy transmission is economically or technically unfeasible on a
nightly basis, change propagation is the only solution. In order to insure that
consistent data is propagated in this scenario, a 2-phase commit process should be
used for the changed data transactions.

DSS-R Schema

The value added to the data by manipulation or enhancement is very important in
DSS-R environments. Sources are typically legacy systems and the replication
solution should provide the ability to restructure the data from legacy formats into
the relational model. Tools should provide support for JOlNing data from multiple
sources, for calculating new values, for aggregating data and for transforming
encoded data into descriptive forms. (See Figure 5). An important side point to keep
in mind is that one of the principal benefits of DSS-R, aggregation of data or de
normalization, is something that should not be done when the replicate is updatable.
This will be discussed further below under TP-R Replication Schema.

Time based data is also important, particularly where trend analysis is desired. For
this capability, the maintenance of data histories is important. Such histories can
include complete records of all activities to a table, summaries based on point in
time source data, and summaries based on changed data.

Cascading Replicates

A common application model is one where there are 100's or 1,000's of database
servers (e.g. in branch offices) fed from a smaller number of distribution nodes,
which are in turn fed from a central host source. Efficient distribution requires
support for cascading replicates where copies can be made from other copies. For
example, the central host distributes to 20 distribution nodes each of which
distributes to 20 branch offices. The replication system must distribute consistent
data across each of the 400 branches (perhaps at the end of the business day), but
at the same time, subset the data for branch related operations.

Opfimizafion - Push & Pull

Where change capture and propagation schemes are used, there is a choice in the
distribution model: whether to "push" the changes from the source to the target
system(s) as they occur, or whether to "pull" the changes from the source system as
the target(s) request. In general, the push model is best for continuous almost real
time propagation, whereas the pull model is best for more loose currency
requirements. This is because the pull model provides greater flexibility in
reducinglcombining the data at the source site. The pull model also allows more
control and flexibility in the timing of network traffic.

For example, push systems typically distribute every transaction to the target.
Target systems must therefore process every transaction. Where only summary
data is required, data transformation is an added cost after replication. Pull systems,
however, provide the opportunity for aggregation prior to distribution. This is
effective both where only summary data is required and where database hot spots
(areas within the database which receive the most update activity) can be netted
out.

If you are distributing production operational systems, DSS-R technology isn't likely
to work for you and a TP-R approach which can maintain near real time transaction
integrity at data copy sites is essential. On the other hand, for decision support or
other static data the need for real time information may not be important. Here,
multiple schema's or data views, efficiency for size or cost reasons, and a
consistent stable database for a specific period of time, will argue for copies of an
end of period database.

TP-R Replication: Peer to Peer & Masfer/Slave Ap~roaches

Although many DBMS vendors are talking about replication offerings, it would be a
mistake to assume that replication is a commodity. Different architectural
approaches to the implementation of replication provide fundamentally different
capabilities. Not only are there important replication server differences between
DSS-R and TP-R approaches, but within each of these architectures there are
important differences.

TP-R approaches have been implemented with two fundamentally different
architectures by ASWINGRES and Sybase. AS WINGRES has built its replicator on
a peer to peer architecture approach. Sybase uses a masterklave approach.

TP-R replication is primarily concerned with creating a single image of a database
across distributed autonomous sites and preserving database integrity in near real

time processing. The overall integrity of databases is preserved by forwarding data
changes resulting from single user transactions.

All data replication, regardless of vendor, copies data from sources to targets.
Master/slave approaches replicate data from master to slave, requiring updates to
successfully complete at the master before the transaction is considered a success
(as far as the application goes). On the other hand, updates in peer to peer
approaches can be made to any data location and then copied into other locations.
A transaction is successfully completed as soon as any one or combination of
locations is able to update one complete copy of the affected data. Peer to peer
allows all locations to own and manipulate any data, broadcasting changes as
required.

In the masterlslave architecture every table or table fragment is assigned to a
primary site. If the primary table's database server fails or access to that server from
the network (where a transaction updating that table has occurred) is denied,
replication doesn't occur and the transaction is queued. This can present a problem
for remotely generated transactions because those processes cannot update their
local, or other sites, until they are first routed synchronously through their primary
tables.

The masterlslave approach to TP-R has the following characteristics:
It's simpler for a vendor to implement (from the replication server point of view)
because it eliminates the potential problem of update collisions (explained
below).
Because its implementation is simpler and more straightforward than peer to
peer, in some circumstances applications will run faster because of lower DBMS
overhead.
It introduces a single point of failure that can lower the overall system availability
as compared with the peer to peer approach.
It's a less general solution than peer to peer.

Although the Sybase architecture is master/slave, the vendor states that its
Replication Server can be set up to support a peer to peer approach. As is
discussed below, collision detection and resolution software should be provided by
any system that supports peer to peer transaction replication. Sybase normally
requires that updates to slave databases be first routed through the master
database. This eliminates the need for collision detection and resolution. However,
if you want to build a peer to peer architecture with Sybase technology you'll have to
write your own 1) collision identification software, 2) collision resolution logic and 3)
logging transfer manager (including recovery). This would be work well beyond the
capabilities of the typical DP shop.

The peer to peer architecture, of which INGRES is the only vendor at this point in
time, is the most general and powerful approach to TP-R replication. It is closest in
capability to a true distributed DBMS in that there is no limitation on where data can
be located or updated. And yet, because 1) we're talking about a replication server
which uses many individual 2-phase commits to broadcast data changes and 2)

16

those changes are asynchronously distributed from the originating application, peer
to peer is more fault tolerant than a distributed DBMS.

A problem that is related to use of a peer to peer replication approach, however, is
the possibility of "collisions". Collision occur when two different originating nodes
update two different physical copies of the same logical data with two different
transactions. When the replication server attempts to broadcast changes from each
of those originating sites it will become aware of this conflict in updates and need to
begin a process of reconciling the differences.

Collisions with a Peer to Peer Architecture
A collision is when the same record, which is physically replicated at two or multiple
sites, is updated during the asynchronous latency period. In other words, after the
time a first update has happened, a second update occurs which is processed at
one site before the propagation of the first update has been completed. So although
a peer to peer approach provides the most general solution for transaction
distribution, it requires software for collision resolution.

When a collision occurs there is no way to construct an application independent
approach that can recover all different types of databases. However, the replication
server can and should have collision resolution logic. First and most important,
collision resolution requires that the system provide notification that a collision has
occurred.

From the moment any transaction is committed, the replication server has to keep
track of all of the processes that further happen in the processing and distribution of
that transaction. That's because in the event of a collision, this information has to be
available to properly resolve the collision.

The replication server should support multiple options for the d.b.a. to choose from
in resolving the conflict. Examples of resolution possibilities include:
1. The initial update has priority. Rollback the conflicting (and later) transaction

with necessary messages to designated parties.
2. The last update has priority. Overwrite the conflict and send the necessary

notices.
3. Resolve the conflict by firing a user specified trigger.
4. Halt the replication process and send a message to the d.b.a..

In order for a number of these processes to work it's helpful is there is a distributed
time service available because current replication servers don't provide this. The
replication server depends on the separate operating system clocks. If they aren't
synchronized, errors will result. An important new facility for this service is OSF's
Distributed Computing Environment (DCE) which provides the necessary
synchronization.

Experience to date with users of peer to peer replication indicates that if the
replication timing chosen is ASAP and if your databases have been properly

designed for replication, the volume of collisions is likely to be very low. Those
conflicts that do occur can be handled 1) by rules in a collision resolution software
module with log entries for manual review, or 2) by manual review. Future
capabilities for replication servers in this area may include expert systems to help
resolve collisions.

Collisions don't happen with a masterlslave architecture such as Sybase's. This is
because the transaction is simply not accepted unless it can be committed at the
master site, or what Sybase calls a "clearing house".

It might be useful to refer back to Figure 3 and re analyze what would have
happened had peer to peer replication been used. In that case, the application,
would have been accepted and considered successful at the completion of its first
database update. That's a powerful performance advantage. Later, however, further
processing on the network resulted in a collision. Some further processing andlor
manual involvement, then, will be required to recover the multiple database copies
in a consistent way.

TP-R and Fault Tolerance
One of the principal benefits of all replication approaches is added fault tolerance
for a distributed computing environment. Fault tolerance provides the overall system
with a capability of continuing to function when a piece of the environment is down.

When something breaks, then, the system working in combination with the d.b.a.,
should provide as much assistance as possible in the recovery process. (Mike
Stonebraker has used the phrase "failover reconstruction" to describe when this
recovery process occurs automatically under software control). Necessary steps in
the failover reconstruction process should include:
1. understanding what is broken
2. understanding what or how the break occurred
3. determining how to fix the damage and reinstate the broken pieces
4. bringing the broken pieces back on-line
5. making sure that the recovery of the database(s) results in consistent data in

those database(s)

The highest level of fault tolerance will be from a system supporting peer to peer
replication. That's because the system considers an update to be successfully
completed when it has completed a database update at any peer site. The site that
is updated is like a floating master in this case. The replication server will queue the
updates to all other data locations.

In a master/slave architecture if access to the master is denied, then the update is
not allowed from the application. When the master location becomes available it
becomes updated. After the master has been updated and when there is some
failure elsewhere, the replication server queues the updates to the slaves until they
are available. This system works as well as a peer to peer approach unless it's the
master node or network that fai Is.

In either case, it's important that your system provide the necessary utilities to allow
the rebuilding of remote databases from information on the local log and database
information on other remote databases. One key utility should be able to
"difference" replicates - in other words to look at a master and slave or two peers
and determine if inconsistencies exist.

Transparency €4 Richness of Function
For a replication server product to be successful, it has to provide enough added
function over what customers have developed for themselves and it should provide
that function transparently to customers. There is a significant difference in the
amount of replication function provided by various DBMS vendors and in the ease
of implementing replication and its various features. Some products require
significant programming with database triggers or database calls to implement
replication. Most of the current replication functionality in Oracle 7 and much of the
service available through Sybase System 10 Replication Server requires
programming with RPC's or DBLib calls by the distributed data base administrator
(d.d.b.a.). Setting up database replication with INGRES is easier in that a
configuration manager is provided that offers a three step forms based approach to
defining the replicated environment.

The TP-R Schema
In order to provide transparent replication services to applications, the d.d.b.a.
needs to be very much aware of the use of a replication server and needs to have
designed the database in a manner that is conducive to distributed operation. In
practice this issue means that de-normalized and/or aggregated data should not be
replicated in TP-R situations. Such derivedlaggregated data should be computed at
each site from the basic data contained in a transaction.

To see this point more clearly the banking example below may help. It illustrates a
process that spans three periods of time (A, B, C) and three branches of a bank (1,
273).

We're looking at one customer's balances after withdrawals are made during a
period of time when the network to one replicated site is down.

At time A, the network is entirely up and the customer's balance (1 00) and
current transaction (none) are identical at all three bank sites.
At time B, the network link to 1 is broken. The customer makes a withdrawal at
bank 2. That transaction is replicated into Bank 3 and the balance from 2 is also

Bank 1 Bank 2 Bank 3
Time

A
B
C

Transact

-30

Balance
100
100
70

X
X

Balance
100
60
60

Transact

-40
-40

Balance
100
60
60

Transact

-40
-40

replicated into 3. Bank 1 still has the old information, since access to it is
unavailable.
At time C, the customer makes a withdrawal at Bank 1.

At any time after this an attempt to reconcile the balances among the three banks is
going to fail. That's because the account balance field in this example is aggregated
(and denormalized). Replicating balance information is going to cause integrity
problems with the data bases.

Repeating, then, in the TP-R environment an important rule for replicating data is to
not replicate aggregated or denormalized data. If the system had simply replicated -
the transaction amounts, normalized data, each site would be able to recover
correctly from a collision like the one illustrated by using a time order to sequence
and process (and compute the balances). In general, a good rule for distributed
processing is to use local database triggers to handle computed amounts such as
account balances.

Replication Timing
Your application shouldn't need to worry about the timing of the asynchronous
distribution of data to target sites. Getting this functionality from your replication
server also shouldn't require you to do programming.

The replication server, be it TP-R or DSS-R, should also provide several
alternatives for timing. Examples are:
1. immediately, as soon as possible (ASAP). In this case the data is moved through

the queues and replication server as fast as possible.
2. scheduled, as determined by the system administrator. In this case, data

remains in the replication server until it is scheduled for distribution.
3. triggered, by user defined criteria such as an event happening, the number of

records exceeding a limit or time of day. When that trigger is fired, the server
moves the data to the distribution queue for remote processing.

4. under manual control

Replication provides asyn cfironous options or
e-mail concepts 10 distributed update

NOW, OR AS SOON AS
POSSIBLE

OVERNIGHT OR WHEN
SCHEDULED

UNDER MANUAL
CONTROL

Figure 5 - Replication offers various timing options

The nature of the system usage will dictate the type of timing used in replication.
For operational systems that expect to be updated with near real time transactions,
the best approach is likely to be ASAP. There is no additional processing overhead
attached to ASAP replication in this case because the user is likely to be in a
situation where the copy distribution is under 2-phase control for each updated site
(to preserve transaction integrity). In such a case, then, there is no processing
savings attached to batching the transactions (although transmission at night might
offer savings).

For decision support or period accounting types of systems a stable database that
is consistent throughout may be preferable to having the most current status. In this
case, for reasons discussed above, scheduled replication may be preferable.

Database Confiaurafion & d. b. a. Utilifies

Managing a distributed database is significantly more complicated than running
against a monolithic single location database. The distributed d.b.a. has all of the
design and implementation issues of a single location &s the added complexity of
distribution, network latency, time shifts and remote administration.

The distributed d.b.a. (d.d.b.a.)is a new job function in addition to local d.b.a.'s. The
following are examples of work the d.d.b.a. will perform:

Designing and planning the replication system, including how and when data is
shared amongst users. It's only after this work has been done that the local
d.b.a. can input the necessary information to set up the replication system.
Coordinating the installation and system configuration amongst its various sites.
Monitoring the operation, performance and recovery of the system from an
enterprise, rather than a local, perspective.

Some ideas to remember as you consider implementing a replicated database
environment are:
I. Set up a plan and understand the rules for distribution of data before the

implementation begins. Implementing replicated databases is not technology
amenable to "let's try it and push it around a bit" approaches. It's necessary to
have a good plan in hand before you begin or you will get lost in the middle of
building the replicated environment. If your plan is good, the implementation can
proceed in incremental fashion, however.

II. Make sure that your d.d.b.a. has good forms based or graphical utilities to assist
in the database configuration and in the management of the ongoing network.
For example, INGRES comes with forms based management utilities and IBM
and Sybase have GUI based management utilities. These facilities should be
able to manage all aspects of a replication environment from a single desktop
that's moveable and can be anywhere on the network. Some points to carefully
consider:
A. How do you specify enhancements to the data? Do you have to learn a new

language for this function?
B. How is the replication setup handled? How much automated support is

provided to the d.d.b.a.?
C. What is the support provided for failure management? How much recovery is

automatically handled and how much d.b.a. intervention is required?
Ill. Your utilities should be able to answer questions like:

I . What tables are at what nodes?
2. What columns are at what locations?
3. What rows are at what locations?
4. Where are transactions routed to?

IV. You should be able to change the database configuration on the fly without
bringing the database or replication operation to a standstill.

V. There should be a mail based error notification system. This allows management
of the distributed enterprise from any node on the network.

Replication into Heteroaeneous DBMS

Today, there are no standards that apply to replication across diverse products. And
there are no standards bodies working on this issue. Issues like utilities and
recovery are just handled quite differently in different vendor's products.

All of the major DBMS vendors are moving toward opening up their replication
capabilities to foreign DBMS. Digital, Oracle, Sybase and IBM are focusing their
attention on links to each other and other relational DBMS products. IBM, INGRES
and Sybase have published their 2-phase commit protocols which allows their users
to participate in heterogeneous distributed database approaches with products from
other vendors.

Both Sybase and INGRES have links & non-relational DBMS in their target
replication capability. Normally if the vendor supports a gateway to that DBMS, then
it can serve as a target for replication. That includes IMS, RMS, VSAM and other
environments for both of these vendors. The gateways to non-relational DBMS don't
require special coding (such as RPC's) and are valuable in allowing the integration
of new distributed systems with older applications.

As a general rule, replication from a foreign DBMS into a replication environment
such as INGRES or Sybase is only available now if the user is willing to program
that functionality. One important exception is an IBM offering which allows
replication from IMS into the DB2/DRDA world.

Anyone contemplating the acquisition of replication technology should understand
how your vendor will assist in migrating to a heterogeneous DBMS environment.
Almost no organization today uses one DBMS exclusively and heterogeneity in
database and file management approaches is likely to increase in the future.
Gateway solutions, of course, are not the same as a replication and 2-phase commit
process that transparently operates over multiple DBMS. The real world is multi-
vendor, multi-department and multi-network. Replication technology that can
operate well across heterogeneous DBMS is something that DBMS users will want.

Summary of Re~lication Benefits

Better Response Time from Local Data
1. A replication server can be instrumental in allowing more efficient usage of a

company's computers and network. By shifting data to the local site where it's
needed, companies can insure that important applications are available at all
times. The response time achievable from local data access can be significantly
improved over response that depends on access from a distance. Also,
replication is more fault tolerant than distributed DBMS. That fault tolerance
results in more consistent processing of transactions with the result that the
overall database is up and responsive more than the equivalent configuration
would provide if it were a distributed DBMS.

Replication for Hot Standby Backup
2. Replication can provide the architecture for backup that can enhance your

system reliability in a local (and/or WAN) environment. Replication, enhanced
with hot-standby software, operates by monitoring the performance health of
your primary server, while transactions are backed up on the replication server.

23

When there's a failure on the primary processor the backup is immediately
available. The system automatically switches to the backup and designates
another machine as the new backup replicate.

Replication can provide you with :remote
backup capabi1:it-v d

Figure 7 - Replication can provide backup to enhance your system reliability

Data A vailability Such as Separate Servers for Separate Functions
Individual workgroups can now have their own replicated databases. This means
not ever having to say "sorry" for network propagation delays. Replication can
enhance performance and provide load balancing locally or over a WAN. As an
example of this, two replicate servers could allow queries to be channeled to one
machine while updates and production work are channeled to the other. The
query server will have accurate information that is exactly current or somewhat
dated, depending on the speed of replication chosen by the user. With DSS-R
approaches the database copies can be enhanced for decision support. Data
can also be replicated from legacy applications and made available now to new
styles of processing across the network.

Replication can reduce network traffic, provide
better local response, lessen host processing

Figure 8 - Replication can enhance performance and provide load balancing

Decision support types of applications are natural replication candidates, because if
they're distributed, replication can greatly reduce WAN traffic.

Spliffing the Workload for Capacify Relief
4. As companies migrate to decentralized operations, they naturally want their

computing support to follow the same form. As the workload is distributed, it is
split among multiple servers. There are significant cost savings attached to using
multiple smaller machines to process work. Replication, done intelligently, can
reduce network traffic and allow the user to derive benefit from what would
otherwise be unused CPU cycles. Another way to look at this is that replication
allows easy local data access at remote sites. This, then, allows:

a. a decrease in response times
b. a reduction in wide area network traffic
c. the establishment of local autonomy which can take over in case of

network or server failure. A key to achieving this advantage is to use a
peer to peer type of replication service. This is so that when recovery
occurs the completed local updates can be properly propagated to
other locations of the same data.

Figure 9 - Split the database sewer load across several machines

Non-Stop Processing & System Fault Tolerance
5. Replication is an important technique for increasing the availability or uptime of

network based computing. Redundancy is the fundamental engineering
approach for increasing reliability and replication can be used exactly for this
purpose.

Replication. can support non-stop or 7 X 24
operation. Take daf.abase 1 off line and
optimize, revise indexi~~g, irlstdl new apps, etc

Figure 10 - Replication is a technique for increasing system availability or uptime

Imagine a retail operation where sales offices are widely distributed and inventory is
kept at a few major warehouse locations. If the warehouse information is replicated
at the sales offices, then it's possible for the sales office to accept tentative orders
even if the network link to the local warehouse is broken. The sales office can
accomplish all of the processing necessary for a sale except for a final confirmation
without access to the central source inventory data.

This kind of capability provides for a higher level of customer service than what
could be provided by a system operating off a single central database with
communication links to the distributed sales offices. For a distributed operation,
then, replication of both TP-R and DSS-R types allows for higher system availability
than a monolithic model.

Conclusion

It's a Complex Environment
The benefits of a properly implemented replication scheme can be very substantial.
The complexity however, in both a managerial and technical sense, of a distributed
environment is much greater than that of a local monolithic environment. This is
especially true for TP-R environments. Data collisions may occur with peer to peer
approaches; the recovery process that this implies requires the cooperation of
excellent software and competent administration.

Your Database Administrator is a Key Resource
It's wise to invest the necessary resources to make sure that the combination of
local and global d.b.a. resources is adequate for your environment. Your d.b.a. will
have to create a data base design that is correct for replication and tested in the
distributed environment. In an operational sense it's important to not shortchange
the time it takes for your d.b.a. to become an expert in diagnosing and resolving
problems in this environment. You should seriously consider consultant assistance,
probably from your DBMS vendor, as part of the first project.

Your Approach Should be Cost and Benefit Based
Make sure that you understand the architectural, currency, data integrity, and
performance implications of a DSS-R or TP-R based approaches. Different
approaches from within any one vendor's product line and/or between vendors
mean that different technologies have very different cost, performance and integrity
results. You should have a DBMS that supports the different requirements of your
application environment.

Managing distributed data through replication and copy approaches is non-trivial
and will require competent technical management. Even evaluating the different
currently available technologies will require an analyst of top caliber.

Because implementing distributed systems offers so many combinations of
technology and benefit you'll need to do some careful management analysis to
understand how these approaches can support your business requirements. Those
business benefits should be measured against the costs of the software and
management necessary.

Keep it Simple, Especially at First
It's wise to begin implementing a distributed database with a single vendor.
However, If you have a heterogeneous DBMS environment, be sure to understand
how your vendor can support a multiple DBMS approach.

